Wildland Fires: Science and Applications (Fall, 2014)

ENFP489W/629W: Wildland Fires: Science and Applications

Wildland Fire Course Flyer, 2015

2015 Course Syllabus

 

Course Description:   This course presents an introduction to the global problem of wildland fires with an overview of the social, political and environmental issues posed as well as detailed coverage of the science, technology and applications used to predict, prevent and suppress wildland fires. Some specific topics covered will include relevant codes and standards, remote sensing, fire spread theory, risk mapping, research instrumentation, suppression, ignition sources and extreme fire behavior. Engineering analyses in many of these areas, as well as specific coverage of Fire Protection design in the Wildland-Urban Interface will also be covered.

Instructor:                    Prof. Michael J. Gollner, Office: JMP 3104A. Email: mgollner@umd.edu,
Office Phone: 301-405-6667, web: www.gollnerfire.com

Teaching Assistant:    Colin Miller. Email: chmiller10@gmail.com

Lectures:                       Tu/Th 9:30am – 10:45am, CHM 1224

Office Hours:               Tu 11:00-12:00 and by appointment. JMP 3104A

                                        Please come by to discuss and ask questions whenever my door is open.

Prerequisites:              Students are expected to have an undergraduate-level understanding of calculus, fluid dynamics, heat transfer and thermodynamics, however students without these requirements showing a strong interest are encouraged to contact the instructor for permission to take the course.

Textbook:                     No textbook is available for this course, however several useful references are listed in the syllabus. A variety of reading materials, including excerpts from books, papers, instructor-prepared notes and webpages will be made available through the course website as required reading throughout the semester.

Website:                       The UMD Canvas course system will host homework solutions, the course calendar, required reading, etc.        https://umd.instructure.com/

Homework:                  Homework will be assigned approximately every week and graded by the TA. These assignments will vary in difficulty and credit and include some laboratory assignments related to in-class activities. Different assignments will be given for the undergraduate (489W) and graduate (629W) sections.

Exams:                          1 Midterm, 1 Final. The midterm exam will be a closed book, closed note written exam in class. The final exam will be a take home project with a written report and in-class presentation. Different exams will be given for the undergraduate (489W) and graduate (629W) sections.

Course Grade:             Homework (weekly)                                            30%

Quizzes                                                                   10%

Midterm (in-class exam)                                     30%

Final (take-home project with written             30%

report and in-class presentation)

Total    100%

Grading Policy:  A weighted average of the homework, the midterm and the final exam, following the percentages above will be used to determine the final letter grade. I’m very flexible with homework or projects if prior arrangements are made, so late homework will not be accepted without prior arrangements.

Concerns on the grading of exams or homework should be brought up with the instructor in writing within 1-2 weekdays of them being passed back. Either an email or notes written on the exam/homework in question are sufficient.

Letter grades will be assigned with +/- values, so please note the university policy update: http://www.testudo.umd.edu/plusminusimplementation.html

Required Technology: All students should have access to a standard scientific calculator. Graphing calculators will be allowed on exams but cannot have any type of communication (e.g. Wi-Fi) or qwerty-type keyboards. Access to computers to use some simulation software, such as FarSITE will be required during the course. Access can be obtained through the Department of Fire Protection Engineering. Students should regularly check the course website on Canvas.

Expectations for Students: Students are expected to read assigned material in advance of lectures, attend lectures, take notes, do assigned homework on time and actively participate in the course. They are strongly encouraged to come to office hours, ask questions in class, and keep the instructor informed of their progress. Half the course grade is based on take-home homework and projects so students should expect to spend a lot of time interacting with the instructor about these assignments. Any concerns about the course should be alerted to the instructor in person or by email as soon as possible, including missing an exam, concerns about material covered, and concerns about grading or any comments about the course.

Exams: Exams and quizzes will be closed book/closed notes unless otherwise communicated. Formulas and relevant tables/charts will be provided for the exam.

Homework: Homework will be assigned approximately bi-weekly. Notifications will be posted online and announcements made in class. When appropriate, solutions will be posted after all homework has been collected and graded. Doing problems is a very important part of learning, especially since material covered on the homework will be very similar to material covered on homework.

Students are encouraged to work together on homework, however ALL work must be your own. No communication or unauthorized help is allowed on examinations.

Academic Integrity: It is expected that students in the course follow the student-administered “Honor Code and Honor Pledge” (http://www.faculty.umd.edu/teach/integrity.html). In this course, students are welcome and encouraged to work on homework, projects and study together, but must complete all exams and homeworks on their own. No unauthorized help or material is allowed on exams.

Upon completing this course, you should be able to:

  • Know the major problems affecting wildland fires
  • Know some environmental, ecological, social, economic and political factors affecting wildfires
  • Predict the spread rate and intensity of wildland fires
  • Assess protection of WUI communities
  • Understand the underlying mechanisms affecting wildland fires

Recommended Resources:

References Books

  1. A. Johnson and K.M. Miyainshi, Forest Fires: Behavior and Ecological Effects, Academic Press, 2001
  2. N. Omi, Forest Fires: A Reference Handbook (Contemporary World Issues), 2005.
  3. G. Quintiere, Fundamentals of Fire Dynamics
  4. Cox, Combustion Fundamentals of Fire

Journals:

Wildland Fire

  1. International Journal of Wildland Fire

Combustion

  1. Proceedings of the Combustion Institute
  2. Combustion and Flame
  3. Combustion Science and Technology
  4. Combustion Theory and Modeling
  5. Progress in Energy and Combustion Science (Reviews)

Fire

  1. Fire Safety Journal
  2. Proceedings of the IAFSS
  3. Fire Technology

Online Resources:

Numerical Tools

  1. http://www.firemodels.org/
  2. http://fire.org/
  3. http://reaxengineering.com/trac/wfhmt/
  4. http://reaxengineering.com/trac/elmfire/
  5. http://www.openwfm.org/

Wildland-Urban Interface                                                                                           

  1. http://firewise.org/
  2. https://www.disastersafety.org/wildfire/
  3. http://www.fireadapted.org/
  4. http://www.nfpa.org/safety-information/for-consumers/outdoors/wildland-fires

 

NOTE: This syllabus and course outline is subject to change at any time – please listen to announcements in class, by email and on CANVAS!

DRAFT Course Outline

Week Date Topic Assignments/Exams
1 9/1 Background on Wildland Fires

 

Reading: Omni Chapter 1-3

Homework 1 assigned (background)

  9/3 Background and Ecology & Fuels

 

Reading: Fuel Moisture Content

 

2 9/8 READING QUIZ 1 (on Omni Chp. 1-3)

Administered by TA.

Homework 1 due

Homework 2 Assigned (Ecology & Fuels)

Reading: Fire Behavior Fuel Models

  9/10 Ecology & Fuels, Fuel and Moisture Content Sampling Reading: Pyne, Chp. 3

Fuel Sampling Methods

3 9/15 Fuels & Ignition Homework 3 Assigned (Ignition + Fuel problems + Ignition & Smoldering lab)

Reading: Ignition (Quintiere)

  9/17 READING QUIZ 2 (on Pyne, Chp. 3)

Ignition

 

Homework 2 Due (Fuels)

 

4 9/22 Ignition & Fire Spread Basics Reading: Fire Spread
  9/24 Ignition & Fire Spread Lab
NOTE: Meet in JMP Lab
 
5 9/29 READING QUIZ 3 (Ignition)

Wildland Fire Spread

 

Homework 3 due

Assign Homework 4: Fire Spread

  10/1 Fire Spread – Models  
6 10/6 Fire Spread, Fire Intensity & Spotting  
  10/8 READING QUIZ 4 (Fire Spread)

Introduction to Computer Fire Models

Homework 5 assigned (Computer Fire Models)

Reading: Introduction to Fire Behavior Modeling

7 10/13 MIDTERM EXAM MIDTERM EXAM

 

  10/15 WUI Guest Lecture – Dave Robbins

Maryland DNR Forest Service

Homework 4 due (Fire Spread)

Reading: FARSITE Walkthrough

8 10/20 Computer Fire Models – Behave & FARSITE Reading: WUI
  10/22 WUI – Introduction and Pathways to Fire Spread Project Assigned: WUI Community Design

 

9 10/27 WUI Design and Community Safety  
  10/29 WUI – Hazard Assessment Techniques Homework 6 Assigned: Fire Sensors

Homework 5 due (Computer Fire Models)

10 11/3 Measurements in Fire  
  11/5 Fire spread – Experiments & Sensing
Lab Day (Guest Lecture TBD)
Reading: Pyne et al.: Fire Weather
11 11/10 Fire Weather Project Proposal (draft) due
  11/12 QUIZ 5 – WUI and Fire Sensors

Extreme Fire Behavior – Mass Fires & Whirls

 

Homework 6 Due – Fire Sensors

 

12 11/17 Remote Sensing –Guest Lecture TBD  
  11/19 Fire Management – Firefighting methods – Guest Lecture TBD  
13 11/24 Fire Cause and Origin Investigation – Guest Lecture – TBD  
  11/26 THANKSGIVING NO CLASS
14 12/1 WUI Community Fire Investigation – Guest Lecture – TBD  
  12/3 Extreme Fire Behavior Part II  
15 12/8 QUIZ 6 – Guest Lectures

Final Project presentations

 
  12/10 Final Project presentations

TURN IN FINAL PROJECTS

Final Project presentations

TURN IN FINAL PROJECTS

 

Note: This is a ROUGH outline of the material to be covered and expected dates of the exams. These are all SUBJECT TO CHANGE, so please listen to announcements in class and on the website for the most updated information.